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ABSTRACT MOTIVATION AND IMPACT

An adjoint-based optimization framework for multiphysics problems governed by coupled partial differential equations is pre- o
sented. High-order spatio-temporal discretizations are used for the underlying PDE and quantity of interest to obtain highly
accurate simulations at a reasonable cost. The corresponding fully discrete adjoint equations are used to yield very precise
gradients of quantities of interest. The deterministic optimization framework is extended to address the challenges posed by
stochastic optimization where the input data for the PDE is not known with certainty. Such problems require an ensemble of
primal and adjoint solves at each optimization iteration and dramatically increases the computational cost. To address this issue,
a globally convergent multifidelity optimization framework is presented that is capable of reducing the cost of solving stochastic
optimization problems by several orders of magnitude. Finally, a novel optimization-based framework is presented for solving

PDEs with discontinuous solutions to high-order accuracy.

HiGH-ORDER ADJOINT-BASED OPTIMIZATION

e We propose a globally high-order framework for solving optimization problems governed by deforming
domain conservation laws using gradient-based methods.

e The conservation law is transformed to a fixed domain using the Arbitrary Lagrangian-Eulerian for-
mulation and discretized to high-order using discontinuous Galerkin in space and diagonally implicit
Runge-Kutta in time. Quantities of interest are discretized in solver-consistent manner.

e The corresponding fully discrete adjoint method is derived and implemented to yield exact gradients of
the optimization functional.

Energetically optimal flapping motions |3, 4]
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Flow vorticity around flapping airfoil undergoing pure heaving motion (top) and an energetically optimal motion under a
thrust constraint of T, = 2.5 (bottom). Snapshots are taken at five equally spaced time instances.
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Visualization of the flow field around 3D flapping wing corresponding to the energetically optimal motion at neutral thrust
(T = 0). Snapshots are taken at six equally spaced time instances.

Optimal energy harvesting mechanism
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Flow vorticity around flapping airfoil-damper system undergoing an optimal pitching trajectory that maximizes energy
stored in the damper given limited available input energy Fy < 0.15. Snapshots are taken at five equally spaced time
instances.

Data assimilation to enhance Magnetic Resonance Images (MRIs)
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Top: MRI voxel data with 10% noise overlay on vortex tank domain and mesh at 4 instances in time. Bottom:
Reconstructed flow in vortex tank at same 4 time instances, obtained using adjoint-based optimization framework for data
assimilation to determine correct inflow boundary condition.

e Outside of the traditional context of design and control, PDE-constrained optimization can lead to improved computational
models through data assimzilation, where the parameters of a model are inferred by optimally matching the simulation result to
measured data. The proposed optimization framework has been used to enhance the resolution of magnetic resonance images.

Optimization problems governed by partial differential equations are ubiquitous in science and engineering and robust, efficient,
and effective solutions of these problems can lead to improved designs or discovery not otherwise possible. We have leveraged the
proposed methods to study energetically optimal flight and optimal energy harvesting mechanisms, among other problems.

e The combination of optimization and uncertainty quantification is critical since, in reality, we generally seek optimal and risk-

averse designs that are robust with respect to uncertainties in the operating conditions.

STOCHASTIC OPTIMAL CONTROL

e In many science and engineering settings, it is not Viscous Burgers’ Equation
sufficient to merely find an optimal solution, rather

an optimal solution that is risk-averse or robust w.r.t.
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e However, the merging of uncertainty quantification 5 2 3
and optimization leads to extremely expensive meth- Nk 3
ods since every optimization iteration requires an en- =
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semble of PDE solves to integrate risk measures over 0
the stochastic space.

e We propose a framework that incorporates two sources
of inexactness in the stochastic PDE-constrained op-
timization process to reduce the overall computa-
tional burden: anisotropic sparse grids to efliciently
approximate integrals over the stochastic dimension

solution of the stochastic optimal control problem (
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Incompressible Navier-Stokes Equation
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Left: the control defining the initial guess for the optimal control for the viscous Burgers’

equation (- - - ), the solution of the deterministic optimal control problem (- --), and the

). Right: the mean solution of the viscous

Burgers’ equation at the initial control (- - =), optimal deterministic control (- - =), and the

optimal stochastic control. One (- - - ) and two (
solution corresponding to the optimal stochastic control are also included.

) standard deviations about the mean

The vorticity of the incompressible Navier-Stokes equations corresponding

and reduced-order models to reduce the cost of PDE #HDM (ndof)

#ROM (mean size)

to a traditional backward-facing step (left) and that corresponding to the

solves. Global convergence guaranteed by managing
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inexactness with trust-region method [1]. op
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solution of the risk-neutral optimal boundary control problem that seeks to
minimize the magnitude of the vorticity in the re-circulation region by
injecting fluid along the vertical edge of the step (right).
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HiGH-ORDER SHOCK TRACKING

e The problem of finding (numerically) the solution of conservation laws when the solution contains dis-
continuities or sharp gradients has been a longstanding difficulty, particularly when high-order methods
are used.

e This difficulty usually arises from using a polynomial basis to capture a discontinuous feature, which is
likely to exhibit Gibbs’ phenomena, particularly for high polynomial orders.

e However, the inter-element solution discontinuities supported by discontinuous Galerkin (dG) and Finite
Volume (FV) discretizations provides a convenient way to capture discontinuous features if the mesh
can be aligned with such features.

e We propose an optimization-based, r-adaptivity framework |2| that looks to find the discretized
dG/FV solution uw and nodal positions of the computational mesh x that simultaneously satisfy the
discretized conservation law r(u; ) = 0 and minimize some measure of the Gibbs’ phenomena

fu; x)

subject to r(uw; ) = 0.

minimize
u, T

Quasi-1D Euler Equations
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The solution of the quasi-1d Euler equations using 300 linear elements ( ) and 4 quartic elements ( ). The vertical

lines ( ) indicate the element boundaries. Left: The high-order elements are not aligned with the shock and cause
substantial over /under-shoot. Right: The high-order dG shock tracking framework is applied to align the high-order
elements with the shock and the resulting solution matches the 300 element reference solution very well, with substantially
fewer degrees of freedom.

2D Euler Equations, Supersonic Regime

The solution of the 2d Euler equa-
tions using: 67 quadratic elements
on a mesh not aligned with the
shock (left), 67 linear elements on
a mesh aligned with the shock
(middle), 67 quadratic elements
on a mesh aligned with the shock
(right). The shock-aligned meshes
and corresponding solution were
obtained using the high-order dG
shock tracking framework.

CONCLUSIONS AND FUTURE WORK

e This work presented an adjoint-based optimization framework for multiphysics problems using high-
order, partitioned spatio-temporal methods.

e A multifidelity framework that leverages adaptive sparse grids and reduced-order models was developed
to extend this deterministic framework to stochastic optimization problems. The method is several
orders of magnitude faster than traditional approaches to solve such problems.

e A full space PDE-constrained optimization framework was developed to resolve discontinuities with
high-order accuracy by aligning the underlying mesh with the discontinuities. This was demonstrated
on the quasi-1D and 2D Euler equations, where the entire flow field, including the discontinuity, were
very well resolved on extremely coarse, high-order meshes.

e In the upcoming months, we intend to team with application experts to solve relevant science and
engineering optimization problems. We also intend to further develop the shock tracking method,
which is in its infancy, by devising an efficient full space solver for the optimization problem and test
the method of 3D problems.

TECHNICAL CAPABILITIES AND CHALLENGES

Capabilities: We currently have a modular, extensible PDE-constrained optimization framework and
codebase that can be adopted by other groups. Additionally, we are among the first to successfully align
high-order meshes with discontinuous feature and recover high-order convergence for these problems,
which should prove useful for groups interested in high-speed conservation laws.

Challenges: The development of the full space nonlinear optimization method required for a large-scale
implementation of our shock tracking method would benefit from the expertise of an expert in optimization
theory; we are currently uses SNOPT as a solver.
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